

institute for art, science and technology

BioHack Academy Microbial Physiology

What are these comics made of?

Eukaryotic cell

Prokaryotic cell

Marion – CC-BY-SA 3.0 Public Domain

The Cell

Life is made out of cells

Lipid bilayer cell

What's a cell made of:

- Lipids
- DNA
- RNA
- Proteins
- Metabolites
- lons

DNA & Chromosomes

Blueprint or music

Origin of Species

The betwee A & B. caring

Less of whiten. C + B. The

frient predation, B & D

rather greater historican

Then genne wow he

fromed. - bienry whiten

DNA Molecule

Discovery of the double helix

A PERSONAL
ACCOUNT
OF THE
DISCOVERY
OF THE
STRUCTURE
OF DNA

Alternative structures: DNA knitting

5,000 vs 25,000 genes

Genome size compared

RNA

"Central Dogma"

"Central Dogma"

"Central Dogma" in the cell

Proteins

Some proteins are enzymes

Amino acids, the building blocks

Gly	Ala	Val	Leu 0	lle 0
H ₂ N—CH—C—OH	H ₂ N—CH—C—OH	H ₂ N — CH — C — OH — CH — CH ₃ — CH ₃	H ₂ N—CH—C—OH CH ₂ CH—CH ₃ CH ₃	H ₂ N—CH—C—OH CH—CH ₃ CH ₂ CH ₃
Met H ₂ N—CH—C—OH CH ₂ CH ₂ CH ₂ CH ₃	Phe O O O O O O O O O O O O O O O O O O O	Pro OHOH	Asp O O O O O O O O O	Glu O O O O O O O O O
Ser O	Thr O	Cys 0 H₂N — CH — C — OH CH₂ SH	Tyr OH OH	Asn
GIn	Trp O O O O O O O O O	CH ₂ CH ₂ CH ₂ CH ₂	Arg H ₂ N — CH — C — OH — CH ₂ — CH ₂ — CH ₂ — CH ₂ — NH — C — NH	His O O O O O O O O O O O O O O O O O O O

Dalibor Bosits CC-BY-SA 3.0

Amino acid groups

Amino acid rosetta stone

Peptide bond formation

"Central Dogma" in the cell

Process in more or less 3D

Public Domain

Protein folding

Snapshot of the process in 3D

Myogloblin

Canal Lysozyme

Structural proteins: Actin

Receptor proteins

Photosystem II

Synchrotron EMBL Grenoble

Lysozyme crystal

Protein crystal diffration

Diffraction Process

Diffraction Pattern from NSLS

Energy

Energy from the environment

First law of thermodynamics

Second law of thermodynamics

Nothing will happen spontaneously unless it increases the **entropy** of the universe

Entropy is a measure of disorder

Chloroplasts

Diversity in Metabolism

Diversity in growth conditions

Nutrients

Atmosphere

Temperature

Elements of Life

Non selective

- Plate count agar
- Nutrient agar

Slightly selective

- Malt agar
- MRS agar

Kombucha medium

• Spirulina medium

Diversity in Atmosphere

Term	Property	Example
Strict aerobe	Requires oxygen	Pseudomonas aeruginosa
Stric anaerobe	Does not tolerate oxygen	Bacteroides fragilis
Facultative anaerobe	Aerobe, but can also grow anaerobically	Escherichia coli
Aerotolerant	Anaerobe, but can tolerate oxygen	Clostridium perfringens
Micro-aerophilic	Prefers reduced level of oxygen	Helicobacter spp.
Capnophilic	Prefers increase level of oxygen	Neisseria spp.

Diversity in Temperature

Term	Property	Example
Psychrophilic	Temp < 10 C	Flavobacterium spp
Thermophilic	Temp > 60 C	B. stearothermophilus
Mesophilic	20 - 40 C	Most pathogens

Bacterial growth curve

Time

Conclusions

- Life is made out of cells
- Cells are envelopes made out of lipids
- Cells create specialised structures to conduct chemical reactions
 - Structures are made out of standardised blocks
 - DNA out of nucleotides (A, T, C or G)
 - Proteins out of amino acids (20 types)
 - The combination (sequence) of building blocks results in a specific 3D shape
 - Shape = function
 - Shapes interact by docking

